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Abstract. The geometric phase (GP) for bipartite systems in transverse external magnetic fields is inves-
tigated in this paper. Two different situations have been studied. We first consider two non-interacting
particles. The results show that because of entanglement, the geometric phase is very different from that
of the non-entangled case. When the initial state is a Werner state, the geometric phase is, in general, zero
and moreover the singularity of the geometric phase may appear with a proper evolution time. We next
study the geometric phase when intra-couplings appear and choose Werner states as the initial states to
entail this discussion. The results show that unlike our first case, the absolute value of the GP is not zero,
and attains its maximum when the rescaled coupling constant J is less than 1. The effect of inhomogeneity
of the magnetic field is also discussed.

PACS. 03.65.Vf Phases: geometric; dynamic or topological – 03.65.Ud Entanglement and quantum non-
locality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.)

1 Introduction

A system can retain the information of its motion when
it undergoes a cyclic evolution, in the form of a geometric
phase (GP), which was first put forward by Pancharatnam
in optics [1] and later studied explicitly by Berry in a gen-
eral quantal system [2]. Great progress has been made
in this novel region [3]. The original adiabatic condi-
tion in Berry’s work has been removed by Aharonov and
Anandan [4], and Samuel and Bhandari have generalized
the geometric phase by extending to noncyclic evolution
and sequential measurements [5]. At the same time a
kinematic approach to the theory of the geometric phase
has also been developed by Mukunda and Simon [6]. Re-
cently the generalization to mixed states was conducted,
first by Uhlmann in the mathematical context of purifica-
tion [7], and then by Sjöqvist et al. based on the Mach-
Zender interferometer [8]. Consequently the mixed-state
geometric phase has been experimentally verified using
both NMR interferometry [9] and single photon interfer-
ometry [10]. Recently the geometric phase for a mixed
state was put forward by Singh et al. for the case of de-
generate density operators [11] and a general formula for
parallel transporting was also provided. Despite the great
progress in this field, Bhandari recently raised the criti-
cism that the definition for geometric phase in a mixed
state fails when the interference fringes disappear [12].
This can be explained as the disappearance (appearance)
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of the geometric phase (off-diagonal geometric phase). The
definition of off-diagonal geometric phase (OP) was first
given by Manini et al. for pure states in adiabatic evolu-
tions [13], and then was generalized to the non-adiabatic
situation [14] and in mixed-states [15]. Moreover the off-
diagonal geometric phase was studied in the degenerate
case [16] and in bipartite systems [17]. Recently the effect
of entanglement on the off-diagonal geometric phase has
also discussed [18].

The quantum computation scheme for the geometric
phase has been proposed based on the Abelian [19] or
non-Abelian geometric phase [20], in which the geomet-
ric phase has been shown to be intrinsic against faults in
the presence of some kind of external noise due to the
geometric nature of the Berry phase. Consequently quan-
tum gates based on the geometric phase have also been
proposed in different systems [21], where the interactions
play an important role for the realization of some specific
operations.

Bipartite systems are of great importance in quantum
computation, such as the transfer of quantum information,
the construction of entanglement as well as the realiza-
tions of logic operations. Furthermore, it was found that
GPs may be used to design quantum logic gates. These
facts together give rise to the question of what are the
geometric phase and its motion in bipartite systems. Re-
cently some papers have addressed this issue [22,23], where
the discussions respectively focus on the entanglement de-
pendence of the geometric phase for subsystem and the
coupling effect on the GP for subsystem under adiabat-
ical evolution. However, another question remains open;
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how the entanglement or interaction affects the geometric
phase for the whole system. This consideration is not triv-
ial since any quantum information procession cannot be
implemented by only one qubit. Moreover some interesting
results may be found with the increment of the size of the
system. In this paper, focusing on the entanglement and
inter-subsystem couplings, we present explicit discussion
of the geometric phases in bipartite systems.

For this purpose, our discussion is divided into several
sections. In Section 2, we describe the model to be dis-
cussed in this paper and some formulas are also present for
the calculation of the geometric phase. Then in Section 3
we study the geometric phase for two noninteracting par-
ticles and some interesting results can be found in this
section. The intra-subsystem coupling effect on the geo-
metric phase is studied in Section 4. Finally, conclusions
are given at the end of this paper.

2 Model

In order to highlight the effect of the entanglement, we
choose the initial state as

ρ(0) =
1 − r

4
I + r|Φ〉〈Φ|, (1)

where r ∈ (0, 1] determines the mixing of this state and I
is the unit matrix in the 2 × 2 Hilbert space. Notice that
for r = 0 equation (1) is the unit matrix and its geometric
phase is trivial (always be zero), our discussion excludes
this case. The state |Φ〉 may be either of the following
states,

|ϕ〉 = sin θ|11〉1,2 + cos θ|00〉1,2

|ψ〉 = sin θ|10〉1,2 + cos θ|01〉1,2 (2)

where θ determines the degree of entanglement and
|1(0)〉i (i = 1, 2) is the eigenstate of Pauli operator σz .
One should note that when θ = (3)π/4, the equations
above are Bell states and equation (1) are the Werner
states [24], which plays an important role in quantum in-
formation processings, especially in quantum communica-
tion via noisy channels [25] and quantum distillation [26].
In general the mixed state (Eq. (1)), which was first in-
troduced by Wootters [27], may be entangled; that can
be judged by the Peres-Horodecki condition [28]. Equa-
tion (1) includes all possible cases, such as pure or mixed
states and maximal or non-maximal entangled states. One
should note that equation (1) is triplet-degenerate for
r �= 1.

We should point out that the initial state (Eq. (1))
is not a trivial generalizing from the pure case. The first
term in equation (1) can be regarded as the noise, and
the mixing coefficient r properly describes the intensity
of noise. Recently the one-to-one correspondence between
r of Werner state and the temperature T of the one-
dimensional Heisenberg two-spin chain with a magnetic
field B along the z-axis, has been established [29]. This
connection give us the strong physical support for the ini-
tial state (Eq. (1)).

We choose the system composed of two spin-1/2 parti-
cles undergoing spin procession in an external time inde-
pendent magnetic field in the z-direction. Then the Hamil-
tonian is

H = H0 +HI , (3)

in which the free Hamiltonian H0 and the XX interaction
HI are respectively

H0 = ω1S
z
1 + ω2S

z
2

HI = g(S†
1S

−
2 + S−

1 S
†
2), (4)

where g > 0 is the antiferromagnetism coupling constant
and Sz

i (i = 1, 2) is the z component of spin operator re-
spectively. S±

i = Sx
i + iSy

i (i = 1, 2) are the raising and
decreasing operators of the z component of spin-1/2. Ac-
tually the Hamiltonian (Eq. (3)) is a two-qubit XX model,
which is of fundamental importance to understand the re-
lation between the entanglement and quantum correlation
in interacting many-body systems. In general we suppose
that ω1 may not be equal to ω2 because of the inhomo-
geneity of the external magnetic field. One will find in the
following discussion that the inhomogeneity of the exter-
nal magnetic field has a non-trivial effect on GP.

Some formulas should be addressed for the calculation
of GP in this model. Recently GP for the mixed state
has been discussed by Sjöqvist et al. in [8], based on the
Mach-Zender interferometer and a formula was provided
for calculation of GP for a mixed state,

γg = ArgTr[U‖(t)ρ(0)], (5)

in which U‖(t) was defined as the parallel transportation
operator. Based on this work, Singh et al. [11] studied
GP for non-degenerate and degenerate mixed states and
provided a general method for the construction of U‖(t)
by imposing

U‖(t) = U(t)V (t) (6)

in which U(t) is the unitary evolution operator and is
equal to e−iHt in our model and V (t) is a blocked matrix,
of which the elements are determined by

Vµν = 〈µ|eit
∑

µ′,ν′〈µ′|H|ν′〉|µ′〉〈ν′||ν〉,
|µ〉, |ν〉, |µ′〉, |ν′〉 ∈ {degenerate subspace}

Vkk = ei〈k|H|k〉t, |k〉 ∈ {the remaining space}, (7)

where |µ〉, |ν〉, |µ′〉, |ν′〉, |k〉 are the eigenstates of ρ(0), and
the interference terms between the degenerate space and
the other space are set to be zero in order to keep the
parallel transporting in the degenerate space. One notes
that for different mixed states one has different U‖(t).
Based on these formulas, one can calculate GP. In the
following calculations, we label the initial states as

ρ1 =
1 − r

4
I4 + r|ϕ〉〈ϕ|

ρ2 =
1 − r

4
I4 + r|ψ〉〈ψ|. (8)

and the geometric phases for these states are respectively
calculated in the following parts.
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γg1 = arctan
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γg2 = arctan
−r
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) (9)
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Fig. 1. (Color online) The geometric phases γgj (j = 1, 2) [Arc]
versus r, θ. For γg1 (a), we have chosen ω1 = ω2 and ω1t = π/2;
whereas for γg2 (b), ω1 = 2ω2 and ω1t = π.

3 g= 0 case

We first study the geometric phase without interaction. It
should be pointed out that this situation still has interest
in quantum information, such as quantum teleportation
and communication in which the nonlocal correlation, i.e.
the entanglement between two space-liked particles plays
a crucial role. The geometric phases for ρi (i = 1, 2) in
this case can be easily obtained from the formulas in the
former section,

see equations (9) above.

It is interesting to note that when the initial states are
Werner states, the geometric phase is zero when the de-
nominators in equations (9) are not vanishing simultane-
ously. Furthermore when ω1 = ω2, the geometric phase for
ρ2 is zero since ρ2 is commutative with the Hamiltonian
and it cannot pick up any geometric phase. A detailed
demonstration for γgj (j = 1, 2) with the parameters r, θ
is shown in Figure 1. From the figures it is obvious that
the absolute values of γg1(2) attain the maximum when
θ �= π/4, 3π/4 and because of the mixing, scaled by r, the
absolute value of geometric phase is compressed and tends
to be zero with r → 0. We also note that a singularity
about γg1 appears when θ = (3)π/4 and r = 1, as dis-
played in Figure 1a. At this point, the numerator and the
denominator in the expression of γg1 in equation (9) are
simultaneously zero and the geometric phase is undefined.
One has to calculate the so-called off-diagonal geomet-
ric phase to retain the information of the evolution [13].
Furthermore, our calculation shows that the singularity
depends not only on the entanglement, but on how the
system evolves.

With the consideration of the two noninteracting par-
ticles, it is of interest to discuss the effect of the inho-
mogeneity of the external fields. The results have been
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Fig. 2. The geometric phase [Arc] vs. the inhomogeneity of
magnetic field n = ω2/ω1 with r = 1. Since the figures are
symmetrical with the θ = π/2, we only draw for θ ∈ [0, π/2].
Part (a) corresponds to ρ1 and the other parameters are the
same as that of Figure 1a. The dotted, dashed, longer-dashed
and solid lines correspond respectively to n = 0.99, 0.9, 0.5, 0.
When n = 1, the geometric phase is not discontinued at the
point θ = π/4. Part (b) is for ρ2 and the other parameters are
the same as that of Figure 1b. The dotted, dashed and solid
lines correspond to n = 0.5, 0.1, 0.01. When n = 0, the geomet-
ric phase is not discontinued in the point θ = π/4. Parts (c)
and (d) demonstrate the case that there is no the singular-
ity (we have chosen ω1t = π/4 for ρ1 and ω1t = π/2 for ρ2

respectively).

illustrated in Figure 2. It clearly shows that when there
is a singular point, for ρ1, the absolute value of the ge-
ometric phase with n → 1 attains the maximum close
to this point. Whereas, for ρ2, this happens for n → 0.
We should emphasize that this phenomenon appears only
when there exists the singularity, which is induced by the
entanglement of the initial state. If there is no possibility
of the appearance of the singularity, our calculation shows
that the points where the absolute value of the geometric
phase attains the maximum is independent of the inhomo-
geneity of the external field, shown as Figures 2c and 2d,
and is always zero for the Werner state. Physically it is
thus possible for this phenomenon to act as the signature
of the singularity of the geometric phase, which usually
originates from the degeneracy [13].

Another interesting consideration is that one supposes
ω2 = 0, which corresponds to the case that particle A is
processing with frequency ω1 while particle B is kept dy-
namically fixed. In this case, the affect from the dynam-
ics of the second particle is excluded and one can more
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Fig. 3. (Color online) GP for γg2 [Arc] versus r and rescaled
coupling constant J . We have chosen θ = π/4 (a) and θ = 3π/4
(b) to highlight the coupling effect on the geometric phase,
which corresponds to the Werner state as the initial state, and
set ω1t = 2ω2t = π.

clearly check the effect of the entanglement on the geo-
metric phase. The geometric phase for this special situ-
ation can be obtained by setting ω2 = 0 in equation (9).
One finds that because of the entanglement, the geometric
phase for particle 1 is also zero for the Werner state, and it
is also possible for the singularity to appear, for example
when r = 1 and ω1t = π.

4 g �= 0 case

Because of the intra-subsystem coupling, the evolution of
the system can be very different from the free case. So
in this section we focus on the effect of coupling on the
geometric phase. Obviously one notes that since [HI , ρ1] =
0, HI has a trivial effect on γg1 and thus this state has
been excluded in this section. Based on the formulas in
Section 2, GP are for ρ2,

γg2 =

arctan
−r(sin λ1t cosλ2t− λ2

λ1
cosλ1t sinλ1t)

1 − r

2
+

1 + r

2
(cosλ1t cosλ2t+

λ2

λ1
sinλ1t sinλ1t)

(10)

in which

λ1 = [(ω1 − ω2) cos 2θ − 2g sin 2θ]/2

λ2 =
√

(ω1 − ω2)2 + 4g2/2.

The results are illustrated in Figure 3 with rescaled cou-
pling constant J = g/ω1. Compared with the g = 0 case,
we have chosen the Werner states (θ = (3)π/4) as the
initial states and ω1t = 2ω2t = π with consideration of
the inhomogeneity of the external magnetic field. Because
of the coupling, the geometric phase for the Werner state
is obviously very different from the free case. From these
figures we also note that GP has a maximal or minimal
value when the rescaled coupling constant is less than 1.
Furthermore, when J > 1 the absolute value of GP de-
creases with increasing J . One also notes that because
of the mixing, which is scaled by the parameter r, the
absolute values of GP are compressed, which is same as
the free case. The effect of the inhomogeneity of magnetic
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Fig. 4. GP [Arc] vs. the inhomogeneity of magnetic field n =
ω2/ω1. We have chosen the Werner state (θ = π/4) as the
initial state with r = 1, ω1t = π. The inset is for n = 0.8.
Similar behavior can be found when θ = 3π/4.
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Fig. 5. (Color online) The geometric phase [Arc] for ρ2 when
ω2 = 0 versus r, J . Except of ω2 = 0, all other settings are the
same as in Figure 3.

field are also discussed. Our calculation shows that with
ω2/ω1 → 1, the point that GP has a maximal or minimal
value is infinitely close to J = 0.5 (Fig. 4).

We also investigate the GP when one particle is in
zero field. This case is nontrivial since any system cannot
avoid the affect from the other party. Also it can be used
to manipulate the behavior of one particle by changing
the coupling strength. To this end, we set ω2 = 0 and the
geometric phase is illustrated in Figure 5. Different from
Figure 3, the absolute value of GP attains the maximal
value when J → 1.

An interesting extension to the discussion above is in
the limit of large J = g/ω1. In this case GP has a novel
character, which is displayed in Figure 6. We note that
GP tends to be zero in the limit of large J . This can be
understood as that in the large limit of J the interaction
HI is dominant in equation (3)and the Hamiltonian is in-
clined to be commutative with the Werner state. Then the
entanglement of the initial state tends to be unchanged.

Based on the analysis above, we can conclude that
because of the inter-subsystem couplings, the geometric
phase shows two different characters; in the weak cou-
pling limit, the interaction obviously benefits the geo-
metric phase, displayed in Figures 3 and 5. However, with
further increment of the coupling, the GP decreases and
tends to be zero infinitely. This phenomena can be ex-
plained easily only if one notes that in the infinite coupling
limit, HI is dominant and its eigenstates are just two of
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Fig. 6. γg2 [Arc] in the limit of large J . The parameters have
same values to that of Figure 3 and r = 1 is chosen.

the Bell states. The entanglement is destroyed in the weak
coupling limit and then revived by the interaction in the
infinite limit. The interesting relation between entangle-
ment and interaction between two parties is an important
aspect of quantum information.

5 conclusions

In conclusion, we have discussed the geometric phase for
entangled mixed state equation (1) in an external mag-
netic field. For the free case (g = 0), our studies show
that because of the entanglement, the geometric phase for
the system displays two different types of character. The
first is that if there was no singularity, the absolute value
of the geometric phase attains a maximum when the initial
state is not the Werner state, independent of the inhomo-
geneity of the external field (see Figs. 2c and 2d). Because
of the mixing, scaled by r, it is compressed. Furthermore
the geometric phase is always zero for the Werner state.
The second behaviour occurs when a singularity appears,
induced by the entanglement of the initial states under
their proper evolution. In this case the geometric phase
reaches a maximum with θ tending to the singular point
(see Figs. 1a, 2a and 2b). We also discuss the situation
that one particle is processing and another keeps dynam-
ically fixed, and similar results can be found.

For the case g �= 0, we choose the Werner states as the
initial condition for facilitating our discussion. The results
show that GP is completely determined by the rescaled
coupling constant J and attains the maximal or minimal
value when J < 1. Similar to the free case, we also dis-
cuss the effect of the inhomogeneity of the external mag-
netic field. The results show that for Werner state GP is
always zero when system is in a homogeneous external
magnetic field, independent of the interaction. Further-
more with ω2/ω1 → 1, the absolute value of GP attains
a maximum at the point J → 0.5. The geometric phase
for ω2 = 0 is also studied. Further study in the limit of
large J displays a novel phenomena that GP tends to be
zero and this result has been explained as the revival of
entanglement in this limit.

This work was supported by NSF of China under grant
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